50 research outputs found

    Micro-resonator soliton generated directly with a diode laser

    Get PDF
    An external-cavity diode laser is reported with ultralow noise, high power coupled to a fiber, and fast tunability. These characteristics enable the generation of an optical frequency comb in a silica micro-resonator with a single-soliton state. Neither an optical modulator nor an amplifier was used in the experiment. This demonstration greatly simplifies the soliton generation setup and represents a significant step forward to a fully integrated soliton comb system.Comment: 7 pages, 5 figure

    Continuous-wave second-harmonic generation in the far-UVC pumped by a blue laser diode

    Full text link
    Far-UVC light in the wavelength range of 200-230 nm has attracted renewed interest because of its safety for human exposure and effectiveness in inactivating pathogens. Here we present a compact solid-state far-UVC laser source based on second-harmonic generation (SHG) using a low-cost commercially-available blue laser diode pump. Leveraging the high intensity of light in a nanophotonic waveguide and heterogeneous integration, our approach achieves Cherenkov phase-matching across a bonded interface consisting of a silicon nitride (SiN) waveguide and a beta barium borate (BBO) nonlinear crystal. Through systematic investigations of waveguide dimensions and pump power, we analyze the dependencies of Cherenkov emission angle, conversion efficiency, and output power. Experimental results confirm the feasibility of generating far-UVC, paving the way for mass production in a compact form factor. This solid-state far-UVC laser source shows significant potential for applications in human-safe disinfection, non-line-of-sight free-space communication, and deep-UV Raman spectroscopy

    Spatial-Mode Discrimination in Guided and Antiguided Arrays of Long-Wavelength VCSELs

    Get PDF
    Three means of optical confinement imposed on InAlGaAs/InP 1.3 mu m VCSEL arrays are investigated with self-consistent numerical model of laser operation. Laterally patterned tunnel junction (TJ), in-build guiding realized with air-gap patterning, and antiguiding schemes are investigated and optimized to achieve single-mode operation. The analysis shows that mode discrimination in laterally patterned TJ is very responsive to the injected current, the air-gap patterning reduces influence of the working conditions and supports multimode operation, and finally, antiguiding schemes provide single-mode operation for prescribed geometrical design

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0∗10−137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7∗10−157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    Desenvolvimento e modelagem de quadrirrotor: um estudo de caso

    Get PDF
    TCC (graduação) - Universidade Federal de Santa Catarina. Centro TecnolĂłgico. Engenharia ElĂ©trica.Este trabalho apresenta um estudo sobre o desenvolvimento e modelagem de um veĂ­culo quadrirrotor. Este documento acompanha o processo de desenvolvimento de uma dessas aeronaves, partindo de um estudo sobre as principais dinĂąmicas de voo e caracterĂ­sticas desse tipo de sistema. No estudo Ă© apresentado um processo de caracterização usando as diferentes componentes do aparelho, o que permitiu a modelagem e simulação do sistema. É proposto tambĂ©m uma solução para implementação e controle a partir desse modelo simulado

    An Ecological Approach to Prospective and Retrospective Timing of Long Durations: A Study Involving Gamers

    Get PDF
    To date, most studies comparing prospective and retrospective timing have failed to use long durations and tasks with a certain degree of ecological validity. The present study assessed the effect of the timing paradigm on playing video games in a “naturalistic environment” (gaming centers). In addition, as it involved gamers, it provided an opportunity to examine the effect of gaming profile on time estimation. A total of 116 participants were asked to estimate prospectively or retrospectively a video game session lasting 12, 35 or 58 minutes. The results indicate that time is perceived as longer in the prospective paradigm than in the retrospective one, although the variability of estimates is the same. Moreover, the 12-minute session was perceived as longer, proportionally, than the 35- and 58-minute sessions. The study also revealed that the number of hours participants spent playing video games per week was a significant predictor of time estimates. To account for the main findings, the differences between prospective and retrospective timing are discussed in quantitative terms using a proposed theoretical framework, which states that both paradigms use the same cognitive processes, but in different proportions. Finally, the hypothesis that gamers play more because they underestimate time is also discussed

    Audiotactile interactions in temporal perception

    Full text link

    Turn-on delay and Auger recombination in long-wavelength vertical-cavity surface-emitting lasers

    No full text
    Measuring the turn-on delay of diode lasers provides useful information on carrier recombination dynamics, particularly Auger recombination, essential for their design for high-speed modulation and power-efficient performance. Here we present a rigorous, comprehensive relationship between the time delay and the Auger recombination coefficient. We demonstrate the application of this formulation by extracting this coefficient for AlGaInAs/InP quantum wells incorporated in long-wavelength vertical-cavity surface-emitting lasers. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3488013
    corecore